
Ch. 5 - Mechanical Properties

A very brief explanation of these phenomena is suggested by Fig. 5.9, namely

that many polymers are essentially composites of hard crystalline regions em-
bedded in a much softer amorphous matrix. (Some polymers are entirely amor-

phous). The amorphous part reacts to an applied stress more readily, to the ex-
tent it can, but it takes time to do so. We will examine this theme further in the

next section.

5.5 Atomic Models of Mechanical Behavior

In this section we will explore how much of the mechanical behavior of ma-
terials we can interpret using our knowledge of the structure and interatomic

forces in solids. We will focus on elastic and inelastic deformation of crystalline
solids, in particular metals, but will outline the extension of these arguments

to ceramics as well. At the end of this section, we will comment briefly on

atomic processes in polymers. As always, these will be rather different than for
crystalline materials.

5.5.1 Elastic Deformation: Mainly Metals

The principal definition of elastic deformation is that it must be recovered fully

when the applied stress is removed. As a secondary characteristic we noted

that elastic deformation usually, but not always, goes along with a linear rela-
tionship between the applied stress σ and the resulting strain ǫ.

For deformation to be elastic, it seems evident that it must involve atom-

atom bonds that are only stretched but not broken. If breaking of bonds oc-
curred on a large scale, there would be no reason to expect that all the broken

bonds would be reformed as in the original state once the load is removed.
Fig. 5.14 illustrates this situation with a schematic drawing of a crystalline

rod subject to a tensile stress. Clearly, the forces between neighboring atoms

resist the deformation and will restore the original shape when the load is re-
moved.

Although this picture appears to be qualitatively reasonable, it is worth ask-
ing whether it is in agreement with the notions put forth in Chapter 2 on atom-

atom bonding in solids (see Figs. 2.8-2.10). For the sake of this discussion I have

redrawn Fig. 2.8 as the new Fig. 5.15 below.
This time we are using U(r) for the potential energy because E is the elastic

modulus. U0 = U(r = r0) is a measure of the interatomic bond energy and r0

represents the equilibrium atom-atom separation. You also recall that F(r) =
dU
dr

is the force on an atom, and the slope of F(r) at r0 is correlated with the

stiffness, or what we now call the elastic modulus. Moreover, the slope of F(r)

at r0 is essentially the curvature of the U(r) curve at the minimum.

When you examine the properties of metals across the periodic table, you
will make the interesting observation that the equilibrium distances r0 (or equiv-

alently the lattice constants a) vary by less than a factor 1.2. In fact, for the
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Figure 5.14: Atomic

model of elastic defor-
mation. Crystalline rod

of FCC metal subject

to load F in z-direction.
Note axial stretching and

lateral contraction.
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Figure 5.15: Potential en-

ergy U(r) as a function of

interatomic distance r.

common cubic metals, it would be an excellent approximation to say that a =

0.35 ± 0.06 nm. So if you plotted U(r) curves for different metals on the same

graph, they would lie practically on top of each other and vary mostly with
respect to their depth rather than their width or their position of r0.

These observations suggest that the elastic modulus of a metal should be
correlated with the depth U0 of the U(r) curve. Now, what experimental quan-

tity should be used for U0? Remember that U(r) is a short-hand description of
what really goes in a solid. U(r) in a sense represents the interactions between

a certain given atom and all its neighbors as if it were just between two atoms.

Therefore, let us choose the so-called heat of atomization ∆Ha as the measure
of U0. ∆Ha is a thermodynamic quantity and designates the energy per atom it

takes to atomize the solid, i.e. to separate all the atoms completely.
In Fig. 5.16, the elastic moduli of a number of metals are plotted as a function
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Figure 5.16: Plot of elastic modulus E versus heat of atomization ∆Ha for
a sample of mostly common metals.

of the heat of atomization ∆Ha. Being thermodynamic quantities, the values for
∆Ha are listed per mole. The metals used for the plot are, in order of increasing

E (from 5 to 466 GPa): Li, Ba, Mg, Al, Ag, Au, Zn, Ti, Cu, Pt, Fe, Ni, Cr, Be,

Mo, W , Re. This list should represent a good sample, as it contains about equal
numbers of BCC, FCC, and HCP metals. You will agree that the plot shows a

clear correlation between E and ∆Ha, although there is also a fair amount of
scatter between the data points.

An even better correlation exists between the melting temperature Tm and

∆Ha, as you can see in Fig. 5.17. Even though in the molten state atoms are
not separated much farther than in the crystalline solid state, the quantity ∆Ha,

as an average atom-atom bonding energy, is apparently an excellent predictor
of Tm. It follows from these two plots that a very good correlation also exists

between Tm and E.

An explicit function with the general form of U(r) in Fig. 5.15 is often used
to model the interactions between atoms in a solid in general, i.e. between a

specific atom and all its neighbors. The function is known as the Lennard-Jones
potential. Applied to our situation, it can be written as

U(r) = U0 [ (
r0

r
)

12
− 2 (

r0

r
)

6
] (5.20)

You can easily convince yourself that it has a minimum of −U0 at r = r0

by taking the first derivative. The attractive part is negative and there is some

physical justification for it having the form r−6, but the r−12 term is just a math-

ematically convenient form for the steep repulsive part.
Fig. 5.18 displays the Lennard-Jones potential in a reduced form, u(x), to-
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Figure 5.17: Plot of melting temperature Tm versus heat of atomization
∆Ha for the same metals as in Fig. 5.16.

gether with the associated reduced force f(x), by letting U0 = 1 and x = r/r0.
That is, the equations plotted are:

u(x) =
1

x12
−

2

x6
(5.21)

f(x) =
du

dx
= −

12

x13
+

12

x7
(5.22)

The main thing you should take away from this graph is that the potential is

very steep indeed in its repulsive part, and that on the attractive side it quickly
approaches the value 0. You can also see that U(r) is clearly asymmetric near

its minimum.

If we accept this potential energy function as reasonable, then it is straight-
forward to derive a mathematical expression for the elastic modulus from it.

Have another look at Fig. 5.14: Assume that at the ends where the force F
is applied, the cross-sectional area per atom is Aa. Now, let the force per atom

Fa be given by the derivative of U(r) in Eq. 5.20. Then by the definition of Fa,

Hooke’s Law can be written as:

σ =
Fa

Aa

=
dU
dr

Aa

= E
∆r

r0
(5.23)

Think of ∆r
r0

as the strain of an atom-atom bond and Eq. 5.23 as Hooke’s Law
for an atom-atom bond.

From here it is just a matter of taking the derivative of Eq. 5.20 twice and
doing some algebra to arrive at an expression for the macroscopic quantity E in

terms of atomic parameters. First, solve Eq. 5.23 for E:
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Figure 5.18: Plots of Lennard-Jones potential energy (black curve) and

associated atom-atom force (light gray curve).

E =
1

Aa

Fa

∆r
r0
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r0

Aa

dFa
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∣
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r=r0

(5.24)

This can be evaluated explicitly using dFa

dr
= d2U

dr2 , with the result

E = 72
U0

r0 Aa

(5.25)

At the simplest level, Eq. 5.25 says that the elastic modulus E should be pro-
portional to the atom-atom bond energy U0. This is, of course, exactly what the

data demonstrated in Fig. 5.16 above. To what extent Eq. 5.25 is quantitatively

accurate will be explored in the homework.

5.5.2 Plastic Deformation in Metals

Whereas in the previous section it appeared that our simple atomic solid model
gave a reasonable description of elastic deformation, it may likely be a different

matter with inelastic, or plastic, deformation. Remember: The latter involves

large-scale, permanent deformation with the breaking and remaking of atom-
atom bonds, not just the stretching of them.

Moreover, when you revisit Fig. 5.14, it is hard to see how, under the in-
fluence of a tensile stress, bonds can be broken and then quickly reformed. It
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